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Abstract

The vast amount of data robots can capture today motivates the development of fast and scalable statistical tools to model
the space the robot operates in. We devise a new technique for environment representation through CoRtinuous 0OCcUpancy
mapping that improves on the popular occupancy grip maps in two fundamental aspects: (1) it does not assume an a priori
discrimination of the world into grid cells and therefore can provide maps at an a@rbitraryresolution; (2) it captures Spatial
relationshipstbetweenvimeasurenments naturally, thus being more robust to outliers and possessing better generalization
performance. The technique, named Hilbert maps, is based on the computation of fastikernel’approximationsithatproject
therdatavinarHilbertispacenwhererarlogisticiregressioniclassifiervistlearnt. We show that this approach allows for efficient
stochastic gradient optimization where each measurement is only processed once during learning in an online manner. We
present results with three types of approximations: random Fourier; Nystrém, and a novel sparse projection. We also extend
the approach to accept probability distributions as inputs, for example, due to uncertainty over the position of laser scans
due to sensor or localization errors. In this extended version, experiments were conducted in two dimensions and three
dimensions, using popular benchmark datasets. Furthermore, an analysis of the adaptive capabilities of the technique to
handle large changes in the data, such as trajectory update before and after loop closure during simultaneous localization
and mapping, is also included.

Keywords
Cognitive robotics, learning and adaptive systems, mapping, mobile and distributed robotics SLAM, range sensing, sensing
and perception computer vision

1. Introduction they are next to cells with high likelihood of being occu-
pied. The problem becomes more severe in 3D maps where
the number of cells necessary to represent the environment
with the same resolution grows exponentially as does the
number of required observations. In indoor environments
when the area to be mapped is relatively small and the den-
sity of observations is large, occupancy grids are generally
sufficient to provide a representation that is both fast and
compact. However, representing large 3D outdoor regions
with sparse observations still remains a challenge.

In an attempt to resolve some of these issues, the Gaus-
sian processes occupancy map (GPOM) (O’Callaghan and
Ramos, 2012; O’Callaghan et al., 2009) was proposed. The
idea is to use a Gaussian processes prior over the space of
functions mapping locations to the occupancy class. The

Representing the physical properties of three-dimensional
(3D) space is central to robotics, from manipulation and
grasping to autonomous navigation. Amongst the many
physical properties characterizing the environment the like-
lihood that a particular point is occupied by a solid object
which the robot needs to interact with is certainly one of
the most important. Traditional techniques to create a map
of occupancy rely on the discrimination of an area into regu-
lar sized cells to form a fixed grid on which a sensor model
or likelihood function is applied to estimate the posterior
of occupancy given some sensory data, for example, laser
scans or sonars (Elfes, 1987, 1989). One of the main lim-
itations of such techniques is the assumption that each cell
in the grid is independent of each other and the posterior
computation for the entire map is performed separately for
each cell. This assumption disregards important spatial rela- )

tionships between cells and leads to maps with a series of lga:{)zgefsll;ﬁilc:islngn?:/l;?s(;:y of Sydney, SIT Building, J12 Sydney, New South
“gaps” between cells. For example, cells with no observa-  wales 2006, Australia.

tions have a 0.5 likelihood of being occupied even though  Email: framos@acfr.usyd.edu.au
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method is continuous, i.e. it does not require a prior discrim-
ination of the space, and nonparametric; the complexity of
the representation grows with the number of data points.
The final Gaussian process classifier model possesses many
of the advantages we would like to have in a spatial repre-
sentation as it directly captures spatial relationships through
a parameterized covariance function and produces princi-
pled probabilistic posteriors naturally encoding the uncer-
tainty of the process. The main drawback is the computa-
tional complexity that without approximations or division
of the data into smaller sets scales cubically with the size of
the data.

We propose a simpler and faster approach to con-
tinuous occupancy mapping in this paper. By utilizing
recent advancements in optimization (Zhang, 2004) and
efficient kernel approximations, we represent the occu-
pancy property of the world with a linear discriminative
model operating on a high-dimensional feature vector that
projects observations into a reproducing kernel Hilbert
space (RKHS) (Scholkopf and Smola, 2001). The objective
function for training the model is convex in the parameters
and therefore the global optimum can be found. Further-
more, the model can be trained and updated using stochastic
gradient descent (SGD) making the computation theoreti-
cally independent of the number of observations. The key
to our approach is to quickly generate a large number of
features whose dot product approximates the well-known
radial basis function kernel (RBF) (Scholkopf and Smola,
2001). The RBF kernel can be seen as a feature mapping
into a infinite dimensional space that can asymptotically
represent the complexity of the physical world. We present
three solutions to approximate the kernel. (1) The first
is based on the recently proposed Random Kitchen Sinks
(RKSs) by (Rahimi and Recht, 2008, 2009). (2) The sec-
ond is based on the Nystrom approximation which is very
popular in kernel machines (Williams and Seeger, 2000b).
(3) Finally we introduce a novel feature mapping that gen-
erates sparse features, better capturing local information.
We also show how to generalize these features to accept
probability distributions as inputs which are more robust
to handle localization errors or sensor noise. As opposed to
GPOM, our method can be updated in linear time and scales
well with large amounts of data. It can be used to address
several tasks in robotics, for example, grasping and path
planning. The model provides a function that represents the
occupancy property of the environment, thus enabling the
computation of gradients of surfaces for grasping. Addi-
tionally, it can be seamlessly integrated into optimization
procedures for path planning, minimizing the likelihood of
collisions.

The technical contributions of the paper! are:

1. Hilbertimaps—a novel continuous occupancy map tech-
nique scalable to large datasets and updated in linear
time;

2. anovel sparse Hilbert space feature that better preserves
local information and leads to faster’SGDriterations;

3. a generalization of the method to receive probabil-
ity distributions as inputs to accommodate, in a prin-
cipled manner, the uncertainty in the position of the
measurements.

The paper is organized as follows. We first introduce
the method, the features and the extensions to probabilistic
inputs in Section 2. The objective function and optimization
for online learning through SGD is introduced in Section 3.
We discuss relationships between Hilbert maps, GPOMs
and recent results in machine learning related to impor-
tant aspects of this technique in Section 4. Experiments on
benchmark datasets and comparisons are presented in Sec-
tion 5, and conclusions with ideas for future work are in
Section 6.

2. Hilbert maps

We begin the presentation of the method by first introduc-
ing notation. We assume a fobot captures'a dataset D=
{xi, y,-}fi > where x; € RP is a point in two-dimensional
(2D) or three-dimensional (3D) space and g€ {=1;5F1}is
a categorical variable corresponding to the occupancy prop-
ertyrof X;. The dataset is obtained while the robot moves in
the environment with a range sensor such as a laser scan-
ner. Randomly selected points in the line segment of a laser
beam between the sensor and an object are labeled as unoc-
cupied The final point in the beam generating a return is
labeled as occupied. The length of the beam determines
the number of unoccupied points. Due to the amount of
beams in laser scans, one point for every one to two meters
of beam length is typically sufficient. Selectingrtherposiz
tion along the beam at random creates a more uniformly
distributedrdatasetroveritherfreenspace compared to fixed
distance interval sampling. We also assume that the dataset
is incrementally built as the robot collects more data as it
moves in the environment.

Given the dataset, our objectiverisitorincrementallyrlearn
a/discriminative'model’ p(¥|X; W) parameterized by a vector
w to predict the occupancy property for new query points
X,. In this work we adopt a very simple logistic regression
classifier that is simple and fast to learn while being directly
amenable to online learning through SGD. The probability
of nonoccupancy for a point x, can be easily computed as

1
Py ==X, W)= e (1
[+ exp(wTxy,)
while p(y, = +1x,, W)= 1 — p(y = —1|x4, W) is the

probability of occupancy.

The model can be seen as the sigmoid logit function
applied to a linear projection of the input x. However, how
can this simple linear model be able to represent the com-
plexity of the physical world? The key to this problem is to
apply the discriminative model fiotidirectly tortherinputsix
but to a large number of features computed from x, denoted
as Cib(x).2 As we shall see next, the dot product of these fea-
tures can approximate popular kernels commonly used in
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kernel machines for nonlinear classification. Theselkernels
definerarHilbertispace and can represent a nonlinear map-
ping of the inputs to a space of potentially infifiiterdimens
sion (for example in the case of the RBF kernel (MacKay,
1998)) with sufficient complexity to represent the environ-
ment. Note, however, that the advantage of using the feature
approximation to the kernel rather than the kernel itself is
that we can learn the model using fast primal procedures
rather than expensive quadratic programming approaches
as demonstrated in Singer and Srebro (2007) for the case of
support vector machines (SVMs).

In the next three sections, we show approaches to gen-
erate features d(-) that efficiently approximate particular
kernels: k(x,x') ~ &(x)T d(x)).

2.1. Random Fourier features

This kernel approximation method is based on the work
of Rahimi and Recht (2008) with approximation bounds
presented in Rahimi and Recht (2009) for general learning
problems. Formally, a kernel k(x, x) defines a Hilbert space
with inner product (-, -) from a feature vector ®(x) such that

@)

If a kernel is shift invariant (also called stationary) it can
be written as k(7) where T = x — x” and Bochner’s Theo-
rem (Gihman and Skorohod, 1974) can be applied to create
a representation in terms of its Fourier transform.
Theorem 1. (Bochners Theorem) Any shift invariant kernel
k(t), T € RP, with a positive finite measure di 6) can be
represented in terms of its Fourier transform as

vx, X € R : Exx)=(Dx), D).

k()= /RD e Tdu 6). 3)

The proof can be found in Gihman and Skorohod (1974). If

u has a density S(s), the measure du §) can be represented
as S(s)ds = du ) and S(s) is called the spectral density of
k. We can then write

k(‘L’) = / e_is'rS(S) ds = ES(s) [e—is-r]
RD

where Egg) [-] denotes the expectation w.r.t. the density S(s).
The expected value can thus be approximated as

n

k(t) ~ % Zeiisk'f =

k=1

(d(x), d(x)) 4)

where sy, .. ., s, are samples from S(s) and

d(x)= b [e7™1,..

. e—is"-x]
n

)

is the Fourier feature map approximating k(x, x’). In the case
of the RBF kernel defined as

A 1 /
k(x,x')= exp (—FIIX—X ||%>, (6)

where || - || is the Euclidean distance, the approxima-
tion is obtained in two steps: (1) we generate n samples
from S(s)~ N(0,2072I) and b ~ uniform[—m,7]; (2)
for each sample i compute the feature approximation as
cos ;X + b;). The approximation is thus given by

A 1
d>R"‘“d°m(x) = —|[cos@x+ by1),...,cos6,x+ b,)].
Jn
| %
In equation (7) we used the relation e ™* = cos - x) —

isin ¢ - x) and noted that the imaginary part must be zero
for real kernels. Also note that S(s) and k(7) are duals and
thus S(s) can be obtained by calculating the inverse Fourier
transform of k(7). & is symmetric about 0 and is intro-
duced to rotate the projection into the real axis by a random
amount. This is known to produce better results in several
practical problems (Rahimi and Recht, 2008).

2.2. Nystrom features

The Nystrom method (Williams and Seeger, 2000b)
approximates a kernel matrix K by projecting it into a
set of m inducing points, denoted by Xi,...,X,,. Then,
K =~ bed‘[(g’ where K, = [k(X, X) ]vxm 15 a kernel matrix
computed between all points in the dataset and the induc-
ing points, K = [k(%;, X;) lmxm 18 a kernel matrix between
the inducing points and Kt is the pseudo inverse of K.
Factorizing the approximation into a feature vector yields

SN — D2PT (k(x,%1) .., k(%)) (8)

where D = diag(1,...,A,) are the » nonnegative eigen-
values of K in decreasing order and V= v,...,v,) are the
corresponding eigenvectors. It can be shown (Williams and
Seeger, 2000a) that the Nystrom approximation minimizes
the functional

. n R 2
£@)= [ (k) (@) &) px)px)

)

where p(x;) and p(x;) are approximated by a set of » sam-

ples from the data. Therefore, the Nystrom approximation is

nested; i.e. it depends on the particular dataset being used.

This is in contrast to random Fourier features which are

dataset independent and can be computed a priori, once a

specific kernel is defined.

2.3. Sparse random features

The two approaches above can be used to approximate a
RBF kernel but do not produce sparserfeatures. With the
goal to produce a sparse set of features that can be more
easily optimized with SGD, we explore the properties of the
sparse kernel introduced in Melkumyan and Ramos (2009).
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The sparserkernel is defined as

ksparse (X, X/) =
{ |:2+c0§(2nr) (1-=r+ ﬁ sin (err):l if r<1

0 if r>1
(10)
where the matrix €2 is positive semi-definite and
r:\/(x—x/)TQ(x—x/), Q>0. (11)

This kernel has an important property that for distances
r > 1 it returns 0. It also approximates the smoothness of a
RBF kernel being four times differentiable. With this result,
we define the sparse feature as

&)Sparse(x) = (ksparse(xs ﬁl) R ksparse(xa ﬁm) )T (12)

where, as with the Nystrom feature, X,...,X,, is a set
of inducing points where the kernel is centered on. These
inducing points can be uniformly sampled in the area the
robot explores or can be placed in a grid.

2.4. Feature approximation of kernels
on distributions

In realistic mapping tasks there is typically uncertainty
associated with the robot’s position and imperfect sensor
measurements. This uncertainty needs to be taken into
account to accurately reflect the likelihood of occupancy
of a given point in the map. In simultaneous localization
and mapping problems, the sequence in which observations
are made and the uncertainty in data association and motion
estimates all play a significant role in determining the abso-
lute position of laser returns. We show how these uncertain-
ties can be incorporated in Hilbert maps by deriving feature
approximations to kernels over distributions.

Recent work in kernel embeddings has shown how to
map probability distributions to a RKHS (Smola et al.,
2007; Song et al., 2013). We follow this idea to derive our
approximations. First, we assume that each point x is dis-
tributed as P in a probability space P in (X, .A), where X
is the input space and A is an associated o -algebra. Let H
denote a RKHS of functions /' : X — R with a reproducing
kernel £ : X x X — R. The mean map u from P into H
can be obtained as

w:P—->H, P / k(x, ) dP(x) (13)
x
We can produce an empirical estimate of u by drawing
independent samples from P and creating a set W =
{x( ..., x("} such that

I ,
ABy=— 3 k(x,). (14)
i=1

This mean map estimator has been shown to converge to the
mean map at a rate of O( n_%) in Smola et al. (2007).

With the mean map estimator (i, a general positive semi-
definite kernel k(IP;,IP;) on distributions IP; and PP; can be
approximated as follows

Mmm://w%%mmmwwwmw<m

= [ [ k) iy arcs) (16)

11 n m
o _(
%;Z E E k(xf ),xj(-)).

k=1 I=1

amn

In the above we used the reproducing property of H and the
fact that (P, IP)) = (up,, /,L]pj)'}-{. Finally, using the random
Fourier, the Nystrom or the sparse feature approximations
as detailed above, the feature mapping approximation for a
distribution P in H is

b(7)= L3 ) (18)
i=1

where x are samples in ¥ from P.

3. Online learning

The logistic regression model described in Section 2 can be
learnt as part of an online optimization procedure. However,
in contrast to conventional logistic regression, the model
operates on features CiD(x) creating a nonlinear decision
boundary.

3.1. Objective function

To estimate the parameters w we minimizertherregularized
negative log-likelihood (NLL) given by

N

NLL(w) = S1ogp(l®ENwW) +R(w) (19)

i=1
N
= log (1 + exp(—yw' - d(x)) )) + R(W)
i1
(20)

where R(w) is a regularizer to prevent overfitting and to
enforce sparseness in w. In this work we use the elastic net
regularizer that has been shown to produce better results
than L; (LASSO) while preserving the same level of spar-
sity (Zou and Hastie, 2005). The elastic net regularizer is
defined as

RW)= MWl + Azllwlly (21)

where || - ||, and || - ||; are the L, and L; norms respectively,
and A; and A, are parameters balancing the quadratic term
(also called shrinkage parameter) and degree of sparseness,
respectively.
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The gradient of the objective function with respect to w
can be computed as

N

VNBEE) = Y —yP(x;) (1 + exp(yiw" - d(x;)))™"
i=1
AR(W)

v (22)

Note that the L; term in R(w) is nondifferentiable so its
derivative is generally approximated using sub-differentials.

3.2. Stochastic gradient descent

One of the main advantages of utilizing logistic regres-
sion is that the negative objective function in equation
(20) can be optimized using fast'SGDrmethods. This is
because the negative log-likelihood is the sum of the nega-
tive log-likelihoods of individual points. In contrast to batch
algorithms, such as Newton’s method that require the com-
putation of gradients and Hessians for all the points in
the dataset, SGD operates iteratively, taking a small step
towards the goal with each data point.

To minimize equation (20), SGD iterates between ran-
domly selecting a training point {x;,y;} from D and updat-
ing the parameters w as

4 0
Wi =W — nid; ' = NLL(W) (23)
ow

where 1 > 0 is known as the learning rate and matrix 4 can
be seen as a preconditioner to accelerate the convergence
rate. In many cases, 4 can be set to the identity matrix. This
method is intrinsically online as new data points arriving
from sensor measurements can be selected to update the
parameters w. Additionally, convergence analysis and gen-
eralization behavior have been extensively studied (Zhang,
2004; Bottou and Bousquet, 2008). It has been shown that
even if SGD is applied to an unregularized version of
equation (20), it achieves an implicit regularization effect
with good generalization performance (Bottou, 2010). This
facilitates the manual setting of the regularization parame-
ter as we know that even if we set it to zero, the model will
still retain some resilience to overfitting.

The learning rate 7 is either constant or asymptotically
decaying with the number of iterations. To guarantee con-
vergence the learning rate is required to satisfy the condi-
tions Y, n? < co and Y, n, = co. In our implementation,
we use the procedure proposed in Bottou (2012) and set it
ton, = m, where #; is determined empirically from a
small training set sampled from the full dataset, and « is
the regularization strength. This expression ensures a good
compromise between the beginning

learning
rates, and the ideal asymptotically decrease dominated by
(an)™!.

Equation (23) is effectively an online update proce-
dure of the parameters. If the dataset grows, we can

effectively select new points and update the parameters
directly to reflect the new information. Conversely, we can
shuffle the data, pass through each data point once and
repeat the process. This is known as the batch version of
SGD (Zhang, 2004). Finally, we can average the parame-
ters in the last 7 iterations to remove some of the oscilla-
tion commonly seen during the optimization. This is known
as the averaged SGD (Bottou, 2012; Xu, 2011) and has
been shown to improve on the convergence of conventional
SGD for learning rates satisfying the convergence require-
ments above (Xu, 2011). Note that SGD has a constant cost
per iteration and asymptotically converges to the expected
risk (Bottou, 2012).

4. Relationship to other methods

SVMs: There are several classifiers in the machine learning
literature that resemble the method described so far, each
with pros and cons. Notably, Pegasos (Singer and Srebro,
2007) is a different SVM formulation where the expensive
quadratic programming optimization is replaced by SGD
applied to the primal problem. The authors show that this
method scales much better with the number of training
points with strong convergence properties. Pegasos was not,
however, trained on kernel feature approximations as our
method was and used a different loss function. The main
reason we did not use a max-margin loss or hinge loss as
with SVMs and chose the logistic regression formulation
relates to the probabilistic interpretation of the results nat-
urally obtained with logistic regression. An example can
be seen in Figure 1 where we show the same continuous
occupancy map produced by the two methods. As SVMs
do not produce a probabilistic interpretation directly, arti-
ficial probabilistic outputs are generally obtained using the
method in Platt (1999). However, as the figure shows, this
introduces a problem: areas not explored, with no sensory
information, are classified as either occupied or nonoccu-
pied with high confidence. Conversely, with the logistic
regression formulation, unexplored areas are classified with
probability of 50% of being occupied as expected.
GPOM: This work also borrows ideas from
GPOMs (O’Callaghan and Ramos, 2012; O’Callaghan
et al., 2009) in that both attempt to represent the space in
a continuous manner. Both produce probabilistic interpre-
tations of occupancy, and both utilize kernels to represent
data points in a high-dimensional space. However, there
are also significant differences. GPOMs are nonparametric;
i.e. the complexity of the model grows with the number
of data points. Without approximations, GPOMs have a
O(n®) cost, where n is the number of data points, due to
the need to invert a potentially large Gram matrix. GPOM
assumes a Gaussian process prior over the function space
mapping inputs to outputs. To obtain classification outputs
(posterior), a sigmoid-type likelihood is combined with the
prior, resulting in an expression with intractable integrals
that also need to be approximated. GPOM resolves the
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Fig. 1. Comparison between maps produced with logistic regression and SVMs. (a) Data points used for training, blue are non-occupied
and brown are occupied. (b) Map produced with SVMs and Nystrom features, with color indicating probability of occupancy. (c) The
equivalent map generated with logistic regression. Note that the SVM map is over confident about the occupancy status in areas with
no data points, assumed unoccupied. This does not occur with the logistic regression map. Axis units are in meters.

likelihood-prior marginalization with a point estimate
around the Gaussian process predictive mean but this can
result in inaccurate probability estimates for the posterior.
In GPOMs, as a Bayesian method, the (hyper) parameters of
the model can be obtained automatically by maximizing the
marginal likelihood. In contrast to GPOMs, Hilbert maps
are built around a much simpler discriminative model,
based on the logistic regression classifier. Most of the
power of the method in providing accurate interpolations is
due to the combination of features approximating a Hilbert
space embedding with the speed of SGD. Hilbert maps are
parametric models and the complexity of both learning and
inference is independent of the number of data points but
rather depend on the number of features m. In its current
form a Hilbert map is a frequentist technique and, as such,
requires the specification of regularization parameters.
However, we noticed in the experiments that the regular-
ization parameters as well as the kernel parameters can
be easily adjusted and the values do not need to change
significantly for different environments. Hilbert maps offer
significant computational advantages over GPOM at a
reasonable cost: slightly inferior interpolation power due
to the Hilbert space approximation. Note also that Hilbert
maps can be extended to a variational Bayesian logistic
regression formulation as discussed in future work. Table 1
summarizes the main differences between GPOM and
Hilbert maps.

RKS: Another type of kernel approximation based on
the RKSs but with better scalability properties to high-
dimensional data was proposed in Le et al. (2013). The
authors show how to improve the cost of computing the
features from O( nmd) to O(nm log d), where m is the num-
ber of features, n is the number of samples and d is the
dimension of the inputs. The method is based on a fast fac-
torized scheme to create the random matrices s in equation
(7). Even though this extension is interesting for problems
with high-dimensional data such as in computer vision, it
is less effective in our occupancy mapping problem as the
dimensionality of the data is at most 3 for the 3D case.

An interesting study comparing RKS and Nystrom fea-
tures on several regression and classification problems was
presented in Yang et al. (2012). The authors show that
when there is a large gap between the eigen-spectrum Din
equation (8), the Nystrom method can produce impressive
results and outperform RKS. As we shall see in the exper-
iments, this was observed in the occupancy mapping prob-
lem where the Nystrom method required a much smaller
set of features to achieve similar accuracy. Note however,
that the Nystrom method is data dependent and the features
cannot be precomputed as with RKS.

Additive kernels: In computer vision, several kernels
can be written as the sum of the kernel function applied to
each dimension independently: k(x,x’)= 25=1 k(xq,x)).
Examples of these kernels include the intersection, X2,
Hellinger’s and Jensen—Shannon kernels. For this class of
kernels, Vedaldi and Zisserman (2012) proposed a differ-
ent approximation based on a discrete version of Bochner’s
theorem where the spectral representation of the kernel
is approximated by a sum. Their approximation led to
significant speed ups on popular computer vision tasks
such as object and pedestrian recognition with similar
accuracy. As with RKS and the Fastfood approximation
in Le et al. (2013), Hilbert maps can also be imple-
mented with additive kernels. However, the main benefit of
such approximations are in tackling high-dimensional prob-
lems, and hence it is unclear which benefits these features
will bring to low-dimensional problems such as occupancy
representation.

5. Experiments

In the experiments unless stated otherwise we set the
parameters of the model as follows: The kernel parame-
ter o was 1.0, the number of components m for each fea-
ture was Fourier = 10,000, Nystrom = 1000 and sparse =
2000. The regularization parameters were A; = 0.0001 and
Az = 0.15 (for the sparse case A; = 0.001). These param-
eters were obtained through visual inspection of the results
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Table 1. Main differences between GPOM and Hilbert maps.

Method Type Prior Inference cost Learning cost
(per query) (per iteration)

Hilbert Maps Parametric Logistic m m

GPOM Nonparametric Gaussian n? n

GPOM: Gaussian processes occupancy map.
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30% Data Added

60% Data Added 100% Data Added

Sparse Hilbert Map

Nystrom Hilbert Map

Fourier Hilbert Map
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Fig. 2. Evolution of the different maps as observations are incrementally added. From top to bottom we have sparse RBF, Nystrom,
Fourier and occupancy grid maps with 10%, 30%, 60% and 100% (left to right) of the data incorporated. Axis units are in meters.

Note that Fourier features introduce some artifacts, particularly in areas with no data points. Both Nystrom and sparse features produce

similar results. Occupancy grid maps are visually sharper but this does not necessarily translate to better accuracy as the method does

not attempt to extrapolate or generalize to unobserved cells.

and remained unchanged for each of the maps we experi-
mented with. A grid search can also be applied to set these
parameters automatically.

5.1. Comparisons between the features

In the first experiment, we compare the three approaches
to construct features for Hilbert maps. The experiment

was conducted using the data from Intel-Lab (available
at http://radish.sourceforge.net/). To better understand the
generalization power of the features, we created a series
of occupancy maps where several beams from each obser-
vation were removed. The maps created were compared
against test measurements retained for evaluation purposes
and therefore not presented to the algorithm. Figure 2 shows
the maps created by the three features and the conventional



1724

The International Journal of Robotics Research 35(14)

Effect of data sparsity on accuracy

0.78
0.76
\\
e 074 o= SIIIITTTTTTTTTTo QN
3 Tt NS \
C 02 A
(5] 1\
3
507 A\
< 0.68 | | —— Fourier \
—— Nystrom \
0.66 Sparse \
- - - Gridmap \
0.64 |-|--- GPOM ‘
0 20 40 60 80 100

Percentage of Observations Removed

Fig. 3. Evolution of the area under curve for the five mapping
methods when a variable amount of data is removed from each
scan on the Intel-Lab dataset. Fourier, Nystrom and Sparse refer
to Hilbert maps using these features.

occupancy grid maps for 10%, 30%, 60% and 100% of
the original data incorporated. It can be seen that for both
methods, the maps generated with Hilbert maps are much
smoother and represent the uncertainty in the occupancy
status of the environment more clearly. The occupancy grid
maps, despite being sharper, contain a series of artifacts
originated from anomalous observations generated from
laser returns hitting nonreflective objects or influenced by
glass. The Fourier features exhibit artifacts resulting from
the cosine approximation to the RBF kernel in areas with-
out observations, but perform comparably to the other two
features in areas with more observations.

Figure 3 shows the area under the feceivernoperating
characteristic(ROC)curve for the four approaches (Hilbert
maps with Fourier, Nystrom, sparse features and occupancy
grid maps) for several cases where a percentage of the
observations is removed. It can be observed that thersparse
features and the Nystrdm perform the best. We can also
observe that occupancy grid maps have problems in rep-
resenting the environment properly when more than 50% of
the data are removed. This indicates that Hilbert maps are
more robust and possess better generalization performance
than occupancy grids.

In the second experiment we compare Hilbert maps with
sparse features against occupancy grid maps for the out-
door dataset recorded at the University of Freiburg, also
available at http://radish.sourceforge.net/. Figure 4 shows
the maps produced by both methods when 75% of the laser
data is removed from each scan. Removing data from the
scans allows to better assess the generalization power of
both methods. For this test the regularization parameter A,
was changed to 0.6 to exploit the sparsity of the data. It
can be observed that the Hilbert map is significantly more
resilient to outliers and noisy observations that naturally

Table 2. Area under the receiver operating characteristic (ROC)
curve and runtime for occupancy grid maps and sparse Hilbert
maps when evaluated on the outdoor dataset with 75%vof each
laser scan missing.

Method Area under ROC curve Runtime
Occupancy grid map 0.66 88s
Sparse Hilbert map 0.84 850s

Sparse Hilbert Map

9 100 200 0.0

Fig. 4. Visualization of the map obtained using sparse feature
Hilbert maps when 75% of the laser data is removed. The width
of the roads and thickness of the obstacles are better represented
than with occupancy grids.

exist when navigating outdoors. Roads are more clearly
identifiable and the map better reflects the actual shapes as
can be seen in the aerial photo. Note that the width of the
roads is exaggerated in the occupancy grids mostly due to
spurious observations on vegetation. Quantitatively, this is
confirmed in Table 2 where area under ROC curve for both
methods is presented. Also note that the overall uncertainty
of the problem due to the noisy observations is much bet-
ter handled. For this problem, due to the large number of
observations, GPOM cannot be computed without sparse
or nearest neighbor approximations that require storage of
all the data.

Figure 5 shows the equivalent map produced with occu-
pancy grid. Walls and other obstacles are represented as
very thin lines. Compared to Hilbert maps, occupancy grids
tend to overestimate the unoccupied areas in both size
and confidence. An aerial view of the area is presented in
Figure 6.

5.2. Convergence of stochastic gradient descent

In this experiment we compare the convergence of SGD for
the full batch case where all the data is presented to the
algorithm multiple times and the incremental version where
the algorithm sees each datapoint only once. This experi-
ment was conducted on the Intel-Lab dataset with Nystrom
and sparse features. Figure 7 shows the value of the SGD
objective being minimized with more iterations. For each
iteration of the full SGD, all points are presented to the algo-
rithm while for the incremental version, only a small set is
presented without repetition. As expected, the incremental
version oscillates more than the full version however both
cases achieve a similar final energy value. The incremental
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Fig. 5. Visualization of the map obtained using occupancy grid
mapping when 75% of the laser data are removed. The zoomed
area illustrates parts of a wall with high probability of occupancy,
but represented as a very small edge. Compared to Hilbert maps,
occupancy grids tend to overestimate the unoccupied areas in both
size and confidence.

Aerial View

Fig. 6. Aerial view of the are the maps in Figure 4 and Figure 5.

version is significantly faster to execute; the full SGD takes
approximately 21 s to complete 80 iterations with Nystrom
features and 1 s with sparse features, while the incremental
version takes 0.3 s with Nystrom and 0.02 s with sparse fea-
tures. This result indicates the benefits of incremental SGD
to quickly arrive at a solution even without observing the
entire dataset. Also it shows that SGD can take advantage
of sparse features to significantly speed up the computation.

5.3. Comparison with GPOM

We compare Hilbert maps with GPOM on two datasets.
Results comparing Hilbert maps with the three features
against GPOM for the map in Figure 1 are presented in
Table 3. Both methods achieve remarkable classification
results but as expected, GPOMs are much more costly
to compute, typically O(#?) in the number of datapoints.
Hilbert maps can produce similar results while being an
order of magnitude faster. Most of the computational cost in
Hilbert maps is actually the feature computation rather than
SGD. The Fourier features are the fastest followed by sparse

T T
25 —— Nystrom Full y
- - - Nystrom Incremental
I —— Sparse Full
!
2 - - - Sparse Incremental ||
'
'
I
!
1.5 h
> 1. B
87|
-
5 '
= 1
m b
i
1k N
i
I
O
N
RV n N o
B e e S EAS AT S AR Y SN S s
o ',
0 | | | | | | |

0 10 20 30 40 50 60 70 80

Fig. 7. Evaluation of the solution quality obtained when perform-
ing incremental SGD as opposed to full SGD with a fixed number
of iterations using both Nystrom and sparse features.

Table 3. Comparison of map quality and runtime of GPOM with
the three proposed methods on the synthetic example shown in
Figure 1. All methods outperform the GPOM by a large margin
while obtaining identical or very similar results.

Method Area under ROC curve  Runtime (s)
GPOM 1.00 38.0

Sparse Hilbert map 1.00 32

Fourier Hilbert map 0.98 1.2
Nystrom Hilbert map  0.98 6.9

and Nystrom which requires an eigen decomposition oper-
ation. Note, however, that in both cases the features can be
computed in parallel, thus presenting significant speedups
on GPUs. The overall cost of Hilbert maps is O(m) in the
number of features per datapoint.

Figure 3 shows a comparison between GPOM, occu-
pancy grids and Hilbert maps with different features on the
Intel-Lab dataset as a proportion of the data is removed.
As this dataset contains a very large number of data points,
GPOM had to be implemented using sparse approxima-
tions. We utilized the state-of-the-art stochastic variational
Gaussian process classifier as described in Hensman et al.
(2015) for this comparison. Since this GPOM model relies
on sparse variational Gaussian process approximations, it
performs worse than the full GPOM model but becomes
competitive as more data is removed. GPOM achieves a
similar performance to Hilbert maps when 98% of the data
is removed. However, when most of the data is added, its
performance is about 3% worse than Hilbert maps.

5.4. Impact of parameters

In this section we evaluate the sensitivity of Hilbert maps
to three of its parameters: kernel width y = ULZ and regu-
larization constants A; and X,. The experiments were con-
ducted on the Intel-Lab dataset and the parameters that were
not varying were set to the values indicated at the start
of this section. In Figure 8, we plot L; ratio and strength
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Fig. 8. Impact of parameters on accuracy for the Intel-Labs
dataset. Only one parameter is varied at a time while the others
are kept at their defaults, stated at the beginning of this section.
(Top) Regularization strength. (Middle) Kernel width (y = ﬁ).
(Bottom) L ratio. In these plots, A = ax(1 — L — ratio) and
Ay = a X L1 — ratio.

of the regularization () against accuracy such that A, =
ax(1—L; —ratio) and A, = o x L; — ratio.

Both features show reasonable robustness to all param-
eter variations. The sparse feature is more influenced by
the choice of parameters, especially the regularizer. How-
ever, the range of values in which similar performance is
obtained is quite large. All features exhibit similar behavior
with regards to the regularization strength («) in that there is
a broad range of equal performance with a sharp drop when
regularization becomes too large. The kernel width param-
eter has a similar impact on both Nystrdm and sparse in
that after a certain value the performance stagnates or starts
to decrease. Conversely, the Fourier feature seems to ben-
efit from large values. Finally, the ratio between L; and L,
used by the elastic net regularizer has little impact with the
main change being observed for the sparse feature which
naturally prefers sparser solutions, i.e. larger L;-ratio.

5.5. Noisy inputs

In this experiment we demonstrate the ability of the fea-
tures on distributions described in Section 2.4 to deal with

errors in the position of observations. This also addresses
the case where observations are partially observable and
provided as distributions over the location. We used the syn-
thetic dataset presented in Figure 1 but added noise to the
position of the points. This simulates errors in localization
commonly present in real problems but allows us to com-
pare against the ground truth. Figure 9 shows the original
Hilbert map obtained when there is no noise in the data
(top left). The data is then corrupted by Gaussian noise
with 20 cm standard deviation (as a reference the size of
the map is about 30 m). The Hilbert map with Nystrom
features obtained on the corrupted dataset is displayed in
the top right. It can be observed that walls and shapes are
much less defined. This is also the case for the occupancy
grid maps (bottom right) where not even the walls can be
properly identified. The Hilbert map result with Nytrom
features on distributions generates the best result (bottom
left) which resembles closely the result obtained when no
noise is added to the data. This demonstrates the ability of
the kernel approximation on distributions to handle highly
noisy data.

5.6. Map adaptation

This experiment demonstrates the ability of Hilbert maps to
quickly adapt to changes in the position of laser scans. This
is typically required when performing simultaneous local-
ization and map building after a loop closure is detected as
the estimated positions of the robot during navigation can
change significantly after loop closure leading to an inac-
curate map. The experiment was conducted on the Intel-
Lab dataset (available at http://radish.sourceforge.net). An
initial Hilbert map with sparse features was created using
simultaneous localitzation and mapping (SLAM) to com-
pute the positions of the robot before a loop closure was
detected. Once a loop closure is detected, the positions of
the robot are re-estimated resulting in new locations for the
laser scans. The updated data is then presented to the online
learning algorithm and several passes over the corrected
data are performed to assess how quickly a new map, with
the updated data, can be generated from the initial, prior to
loop closure, map. Figure 10 shows the estimated trajectory
of the robot before and after loop closure.

A visualization of the maps after several passes over
the corrected data is shown in Figure 11. From the initial
map on the top left, it can be seen that after only one pass
over the corrected data, the resulting map already contains
most of the structure of the after loop closure map. In areas
where no information had been available the corrected map
is recovered almost instantly. In areas of conflicting infor-
mation the first pass gives already a good result while the
second and fifth pass are both equally accurate with the
main difference being the sharpness of the final map.

A quantitative evaluation in terms of area under the ROC
curve is presented in Table 4. The evaluation is performed
against a test set comprised of 5% of the corrected data
removed from training. The result obtained before loop
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Fig. 9. Visualization of the impact of noisy data. The top left image shows the result obtained when no perturbations are present using
Hilbert maps. In the top right the data is perturbed with no compensation performed in the mapping. The bottom left image shows how
the RKHS allows us to recover the map. The bottom right shows the effect data sparsity and noise has on occupancy grid maps which

would not be suitable for actual use. Axis units are in meters.

Table 4. Area under the ROC curve for the Intel-Lab map evalu-
ated before loop closure, with the previous map and corrected data
after loop closure and several passes over the corrected data, and
the results using only the corrected data.

Method Area under the
ROC curve
Before loop closure 0.54
Before and after loop closure, 1 pass 0.86
Before and after loop closure, 2 passes 0.89
Before and after loop closure, 3 passes 0.90
Before and after loop closure, 5 passes 0.91
Only after loop closure, 5 passes 0.93

closure is poor as expected. Interestingly, after only one
pass over the corrected data the area under the ROC curve
already improves significantly compared to the before loop
closure map, approaching the quality of the map with only
the corrected data. Performing two, three and five passes
over the data leads to modest improvements, approach-
ing the maximum 93%. This experiment demonstrates that
Hilbert maps can quickly adapt to changes in the environ-
ment even if previous observations contradict new informa-
tion. Furthermore, the model obtained by such corrections
has similar quality to a map built from the correct data only.

5.7. 3D Hilbert Maps

In this section we present experiments to demonstrate the
ability of Hilbert maps to deal with 3D laser scanner data.
We use data obtained from a stationary Riegl scanner,

0l i
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—20 - |
30 |- —— With loop closure

| ‘— Wit‘hout lo?p closu‘re

1 1
-15 -10 =5 0 5 10 15

Fig. 10. Estimated trajectories taken by the robot before and after
loop closure for the Intel-Lab dataset.

shown in Figure 12(top) which contains around 50,000 data
points.

The Hilbert map was built using the sparse kernel with
2500 features initialized to locations found by clustering
the data points with k-means++ (Arthur and Vassilvitskii,
2007). Figure 12(bottom) shows the representation obtained
when querying the model in a uniform 3D grid. To evaluate
the quality of the map representation we removed 5% of the
training data containing both occupied and free points and
used it for testing. We compare the results obtained with a
Hilbert map with the commonly used Octomap representa-
tion (Hornung et al., 2013). Table 5 shows the are under the
ROC curve scores obtained by the two methods from which
we can see that the Hilbert map performs better. This stems
from the method’s ability to interpolate into areas where no
observations have been made. In comparison, Octomaps,
which are an effective representation of a fixed resolu-
tion 3D grid, have the same drawbacks as 2D occupancy
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0

Fig. 11. Hilbert map adaptation after loop closure. Initially the map is constructed with the data before loop closure. Once loop closure
is detected, multiple passes over the new data are performed. Top row, left to right: pre loop-closure, 1 pass and 2 passes. Bottom row,

left to right: 3 passes, 5 passes and only data after loop closure.

Table 5. AROC for the 3D Riegl dataset when processed using
Hilbert maps and Octomaps. The Hilbert map representation
achieves a higher score due to the ability to interpolate in areas
where data points are missing.

Method AROC
Hilbert maps 0.92
Octomap 0.86

gridmaps in that they assume independence of neighboring
cells causing the representation to have holes even with the
high density data provided by the Riegl scanner.

Interestingly, the experiment also demonstrates another
crucial advantage of representing space as Hilbert maps—
the compression capabilities of the model. This relatively
complicated 3D scene can be represented with only 2500
numbers corresponding to the weights of the features. This
is in contrast to the 50,000 data points of the entire dataset.
The compressed map representation can be exploited in
multi-robot exploration and map building to reduce the
costs of communicating maps between the robots. Similarly,
it can be used for sequential Monte Carlo localization where
each particle contains an instance of the map, reducing the
memory requirements and computational costs.

6. Conclusion and future work

This paper introduced a novel occupancy mapping
technique, Hilbert maps. The technique improves over

Fig. 12. Visualization of the raw Riegl sensor data used in the
experiments (top) and the reconstruction obtained using Hilbert
maps (bottom) where blue points have lower occupancy probabil-
ity then those shown in red.

occupancy grid maps in several ways but notably it does not
require discretization of the space, rendering maps at any
resolution, and it captures spatial relationships to provide
better generalization in areas with no measurements while
being more robust to outliers. To address the case when
the absolute position of observations is partially known
or estimated as part of a SLAM procedure, we propose
a method to embed the probabilistic distribution over the
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spatial location of the observations. The technique explores
recent advancements in kernel machines, in particular ker-
nel approximations, to allow efficient learning through SGD
where strong convergence guarantees exist even when each
data point is visited only once during learning. Experi-
mental results are very encouraging showing that the maps
produced are less influenced by outliers and more accu-
rate in representing the underlying uncertainty. The best
results were achieved with Nystrom and sparse features,
both requiring the specification of inducing points. These
inducing points can be placed on a grid or be obtained
automatically with a clustering procedure such as k-means.
Incrementally adding more features as more observations
are captured or increasing the number of features in regions
of the map where a higher accuracy is required are both
interesting future directions to improve the adaptability of
the model.

An important advantage of online training strategies
based on SGD relates to the speed in which maps can be
updated after major trajectory corrections during naviga-
tion such as loop closures. Upon loop closure, SGD can
be executed on the updated data until convergence to cre-
ate a new updated map. This procedure can be used in
machine learning problems to deal with the problem of
nonstationarity in sequential data (also known as “covari-
ance shift” (Sugiyama et al., 2007)). The advantage of
Hilbert maps is that SGD is very fast and inexpensive to
run therefore retraining can be performed efficiently.

There are many uses for Hilbert maps as a continuous
occupancy representation within a robot system. For exam-
ple, they can be used to generate representations for grasp-
ing (Bohg et al., 2010) with an active visual segmentation
and haptic exploration. The probabilistic outputs provided
by Hilbert maps can guide exploration by informing areas
with higher uncertainty in which additional observations
are required. Path planning can also be performed with con-
tinuous occupancy representations as described in Yang et
al. (2013). Popular planning algorithms such as rapidly-
exploring random trees can use the occupancy property
and associated uncertainty to reason about safety bound-
aries in the environment. This has been demonstrated for
planning in cluttered natural environments with unmanned
aerial vehicles. There is also potential for the development
of path planning strategies based on functional optimiza-
tion of trajectories over Hilbert maps. As a continuous rep-
resentation, Hilbert maps can be directly utilized within
optimization algorithms that attempt to find safer trajecto-
ries. The gradient of the occupancy function with respect
to spatial coordinates can also be easily obtained to speed
up the optimization process. Finally, recent results suggest
that continuous occupancy maps can be utilized for Monte
Carlo localization, achieving superior results to the equiv-
alent formulation with grid maps (Hata et al., 2016). With
an appropriate likelihood model that directly leverages the
continuous representation of Hilbert maps, localization can
be made more robust, particularly under higher levels of
uncertainty.

There are several avenues for future work. First it is easy
to show that both occupancy grid maps and Octomaps are
particular cases of Hilbert maps with specific features. In
the case of grids, if the features are defined as 0 or 1 depend-
ing on whether the position of the input point is within
a square or cube, Hilbert maps will produce similar out-
puts to gridmaps/Octomaps. This highlights the flexibility
of the method and opens the perspective for more feature
developments or combinations of features with very dif-
ferent characteristics. Second, the method is formulated as
a frequentist technique and requires the manual tuning of
kernel and regularization parameters. Even though recent
techniques such as Bayesian optimization can be used for
this purpose (Snoek et al., 2012), the more principled solu-
tion is to formulate the problem as a Bayesian learning task.
Unfortunately, this will lead to nonanalytical solutions to
the posterior and approximation techniques such as varia-
tional methods will need to be applied. Also, the objective
function will no longer be convex and the SGD convergence
guarantees in this case are less developed. Nevertheless
this remains an interesting area for further investigation.
Finally, occupancy mapping is just one example of many
other problems where this technique can be applied. The
fundamental idea of the algorithm which is to provide prob-
abilistic predictions based on a stream of data captured by a
moving robot in an online and efficient manner has a num-
ber of other applications. For example, the algorithm can be
used to learn optimal policies in reinforcement learning, or
to perform online object recognition.

Acknowledgments

The authors would like to acknowledge the anonymous review-
ers who provided numerous suggestions and constructive criticism
during the reviewing process for this extended version.

Funding

This research was supported by funding from the Faculty of Engi-
neering & Information Technologies, The University of Sydney,
under the Faculty Research Cluster Program.

Notes

1. A Python implementation of Hilbert maps is avail-
able for download at https://bitbucket.org/LionelOtt/hilbert_
maps_rss2015.

2. The hat in ® is used to indicate that the feature approximates
a kernel in expectation.
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